Search results
Results From The WOW.Com Content Network
Data analysis is the process of inspecting, ... The characteristics of the data sample can be assessed by looking at: Basic statistics of important variables;
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."
More recently, a collection of summarisation techniques has been formulated under the heading of exploratory data analysis: an example of such a technique is the box plot. In the business world, descriptive statistics provides a useful summary of many types of data.
Two main statistical methods are used in data analysis: descriptive statistics, which summarize data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draw conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). [4]
A cheaper method would be to use a stratified sample with urban and rural strata. The rural sample could be under-represented in the sample, but weighted up appropriately in the analysis to compensate. More generally, data should usually be weighted if the sample design does not give each individual an equal chance of being selected.
The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample covariance relies on the difference between each observation and the sample mean, but the sample mean is slightly correlated with each observation since it is defined in terms of all observations.
Box plot of the Michelson–Morley experiment, showing several summary statistics.. In descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible.
This pre-aggregated data set becomes the new sample data over which to draw samples with replacement. This method is similar to the Block Bootstrap, but the motivations and definitions of the blocks are very different. Under certain assumptions, the sample distribution should approximate the full bootstrapped scenario.