Search results
Results From The WOW.Com Content Network
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
In logic, equality is a primitive predicate (a statement that may have free variables) with the reflexive property (called the Law of identity), and the substitution property. From those, one can derive the rest of the properties usually needed for equality.
On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems (PDF) (Thesis). Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems , Berlin, New York: Springer-Verlag , ISBN 978-3-540-56670-0 .
The finite form of Jensen's inequality is a special case of this result. Consider the real numbers x 1, …, x n ∈ I and let := + + + denote their arithmetic mean.Then (x 1, …, x n) majorizes the n-tuple (a, a, …, a), since the arithmetic mean of the i largest numbers of (x 1, …, x n) is at least as large as the arithmetic mean a of all the n numbers, for every i ∈ {1, …, n − 1}.
Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively ...
The feasible regions of linear programming are defined by a set of inequalities.. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1]