Search results
Results From The WOW.Com Content Network
The reciprocal function: y = 1/x.For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.
A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.
If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A −1. Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or ...
Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...
The multiplicative identity 1 and its additive inverse −1 are always units. More generally, any root of unity in a ring R is a unit: if r n = 1, then r n−1 is a multiplicative inverse of r. In a nonzero ring, the element 0 is not a unit, so R × is not closed under addition.
The Dirichlet series that generates the Möbius function is the (multiplicative) inverse of the Riemann zeta function; if is a complex number with real part larger than 1 we have ∑ n = 1 ∞ μ ( n ) n s = 1 ζ ( s ) . {\displaystyle \sum _{n=1}^{\infty }{\frac {\mu (n)}{n^{s}}}={\frac {1}{\zeta (s)}}.}
A unit is an element a having a multiplicative inverse; in this case the inverse is unique, and is denoted by a –1. The set of units of a ring is a group under ring multiplication; this group is denoted by R × or R* or U(R).
The reciprocal function f(x) = x −1 where for every x except 0, f(x) represents its multiplicative inverse. Exponentiation of a nonāzero real number can be extended to negative integers, where raising a number to the power −1 has the same effect as taking its multiplicative inverse: