When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    The symbol () is the derivative of the temperature T with respect to the volume V while keeping constant the entropy (subscript) S, while () is the derivative of the temperature with respect to the volume while keeping constant the pressure P. This becomes necessary in situations where the number of variables exceeds the degrees of freedom, so ...

  4. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Further time derivatives have also been named, as snap or jounce (fourth derivative), crackle (fifth derivative), and pop (sixth derivative). [12] [13] The seventh derivative is known as "Bang," as it is a logical continuation to the cycle. The eighth derivative has been referred to as "Boom," and the 9th is known as "Crash."

  5. Talk:Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Talk:Fourth,_fifth,_and...

    Another less serious suggestion is snap (symbol s), crackle (symbol c) and pop (symbol p) for the 4th, 5th and 6th derivatives respectively. Higher derivatives do not yet have names because they do not come up very often.

  6. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Here ∂ is a rounded d called the partial derivative symbol. To distinguish it from the letter d, ∂ is sometimes pronounced "der", "del", ...

  7. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    In two dimensions, the Levi-Civita symbol is defined by: = {+ (,) = (,) (,) = (,) = The values can be arranged into a 2 × 2 antisymmetric matrix: = (). Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry [1] and twistor theory, [2] where it appears in the context of 2-spinors.

  8. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    The derivative of a quartic function is a cubic function. Sometimes the term biquadratic is used instead of quartic , but, usually, biquadratic function refers to a quadratic function of a square (or, equivalently, to the function defined by a quartic polynomial without terms of odd degree), having the form

  9. Differential operator - Wikipedia

    en.wikipedia.org/wiki/Differential_operator

    The most common differential operator is the action of taking the derivative. Common notations for taking the first derivative with respect to a variable x include: , , , and . When taking higher, nth order derivatives, the operator may be written: