When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...

  3. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots r 1 and r 2. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.

  4. Quadrature of the Parabola - Wikipedia

    en.wikipedia.org/wiki/Quadrature_of_the_Parabola

    A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.

  5. Vertex (curve) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(curve)

    On a parabola, the sole vertex lies on the axis of symmetry and in a quadratic of the form: a x 2 + b x + c {\displaystyle ax^{2}+bx+c\,\!} it can be found by completing the square or by differentiation . [ 2 ]

  6. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    One way to see this is to note that the graph of the function f(x) = x 2 is a parabola whose vertex is at the origin (0, 0). Therefore, the graph of the function f(x − h) = (x − h) 2 is a parabola shifted to the right by h whose vertex is at (h, 0), as shown in the top figure.

  7. Translation of axes - Wikipedia

    en.wikipedia.org/wiki/Translation_of_axes

    by using a translation of axes, determine whether the locus of the equation is a parabola, ellipse, or hyperbola. Determine foci (or focus), vertices (or vertex), and eccentricity. Solution: To complete the square in x and y, write the equation in the form (+) + =

  8. Quadratic form - Wikipedia

    en.wikipedia.org/wiki/Quadratic_form

    The associated bilinear form of a quadratic form q is defined by (,) = ((+) ()) = =. Thus, b q is a symmetric bilinear form over K with matrix A . Conversely, any symmetric bilinear form b defines a quadratic form q ( x ) = b ( x , x ) , {\displaystyle q(x)=b(x,x),} and these two processes are the inverses of each other.

  9. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...