Search results
Results From The WOW.Com Content Network
Reducing the range of any index to a single value effectively eliminates that index. This feature can be used, for example, to extract one-dimensional slices (vectors: in 3D, rows, columns, and tubes [1]) or two-dimensional slices (rectangular matrices) from a three-dimensional array. However, since the range can be specified at run-time, type ...
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
In Raku, a sister language to Perl, for must be used to traverse elements of a list (foreach is not allowed). The expression which denotes the collection to loop over is evaluated in list-context, but not flattened by default, and each item of the resulting list is, in turn, aliased to the loop variable(s). List literal example:
Data mining is an interdisciplinary subfield of computer science and statistics with an overall goal of extracting information (with intelligent methods) from a data set and transforming the information into a comprehensible structure for further use.
A van Emde Boas tree supports the minimum, maximum, insert, delete, search, extract-min, extract-max, predecessor and successor] operations in O(log log C) time, but has a space cost for small queues of about O(2 m/2), where m is the number of bits in the priority value. [3] The space can be reduced significantly with hashing.
By default, a Pandas index is a series of integers ascending from 0, similar to the indices of Python arrays. However, indices can use any NumPy data type, including floating point, timestamps, or strings. [4]: 112 Pandas' syntax for mapping index values to relevant data is the same syntax Python uses to map dictionary keys to values.
Extract, transform, load (ETL) is a three-phase computing process where data is extracted from an input source, transformed (including cleaning), and loaded into an output data container. The data can be collected from one or more sources and it can also be output to one or more destinations.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})