When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    In statistics, the residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation model, such as a linear ...

  3. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear Template Fit (LTF) [7] combines a linear regression with (generalized) least squares in order to determine the best estimator. The Linear Template Fit addresses the frequent issue, when the residuals cannot be expressed analytically or are too time consuming to be evaluate repeatedly, as it is often the case in iterative minimization ...

  4. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    The better the linear regression (on the right) fits the data in comparison to the simple average (on the left graph), the closer the value of R 2 is to 1. The areas of the blue squares represent the squared residuals with respect to the linear regression. The areas of the red squares represent the squared residuals with respect to the average ...

  5. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    Deming regression (total least squares) also finds a line that fits a set of two-dimensional sample points, but (unlike ordinary least squares, least absolute deviations, and median slope regression) it is not really an instance of simple linear regression, because it does not separate the coordinates into one dependent and one independent ...

  6. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    If the linear model is applicable, a scatterplot of residuals plotted against the independent variable should be random about zero with no trend to the residuals. [5] If the data exhibit a trend, the regression model is likely incorrect; for example, the true function may be a quadratic or higher order polynomial.

  7. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  8. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  9. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    In ordinary least squares, the definition simplifies to: =, =, where the numerator is the residual sum of squares (RSS). When the fit is just an ordinary mean, then χ ν 2 {\displaystyle \chi _{\nu }^{2}} equals the sample variance , the squared sample standard deviation .