Search results
Results From The WOW.Com Content Network
Equivalently, a concave function is any function for which the hypograph is convex. The class of concave functions is in a sense the opposite of the class of convex functions. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex.
The term convex is often referred to as convex down or concave upward, and the term concave is often referred as concave down or convex upward. [3] [4] [5] If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph .
If the second derivative of a function changes sign, the graph of the function will switch from concave down to concave up, or vice versa. A point where this occurs is called an inflection point. Assuming the second derivative is continuous, it must take a value of zero at any inflection point, although not every point where the second ...
For the graph of a function f of differentiability class C 2 (its first derivative f', and its second derivative f'', exist and are continuous), the condition f'' = 0 can also be used to find an inflection point since a point of f'' = 0 must be passed to change f'' from a positive value (concave upward) to a negative value (concave downward) or ...
A related but distinct use of second derivatives is to determine whether a function is concave up or concave down at a point. It does not, however, provide information about inflection points . Specifically, a twice-differentiable function f is concave up if f ″ ( x ) > 0 {\displaystyle f''(x)>0} and concave down if f ″ ( x ) < 0 ...
If it is positive then the graph has an upward concavity, and, if it is negative the graph has a downward concavity. If it is zero, then one has an inflection point or an undulation point. When the slope of the graph (that is the derivative of the function) is small, the signed curvature is well approximated by the second derivative.
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
A: The bottom of a concave meniscus. B: The top of a convex meniscus. In physics (particularly fluid statics), the meniscus (pl.: menisci, from Greek 'crescent') is the curve in the upper surface of a liquid close to the surface of the container or another object, produced by surface tension.