Search results
Results From The WOW.Com Content Network
A relation that is functional and total. For example, the red and green relations in the diagram are functions, but the blue and black ones are not. An injection [d] A function that is injective. For example, the green relation in the diagram is an injection, but the red, blue and black ones are not. A surjection [d] A function that is surjective.
In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. [1] The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity.
A difference equation of order k is an equation that involves the k first differences of a sequence or a function, in the same way as a differential equation of order k relates the k first derivatives of a function. The two above relations allow transforming a recurrence relation of order k into a difference equation of order k, and, conversely ...
In the calculus of relations, the composition of relations is called relative multiplication, [1] and its result is called a relative product. [2]: 40 Function composition is the special case of composition of relations where all relations involved are functions.
[6] [7] [8] Quizlet's blog, written mostly by Andrew in the earlier days of the company, claims it had reached 50,000 registered users in 252 days online. [9] In the following two years, Quizlet reached its 1,000,000th registered user. [10] Until 2011, Quizlet shared staff and financial resources with the Collectors Weekly website. [11]
The functions whose graph is a line are generally called linear functions in the context of calculus. However, in linear algebra, a linear function is a function that maps a sum to the sum of the images of the summands. So, for this definition, the above function is linear only when c = 0, that is when the
Total relations can be characterized algebraically by equalities and inequalities involving compositions of relations.To this end, let , be two sets, and let . For any two sets ,, let , = be the universal relation between and , and let = {(,):} be the identity relation on .
Then there is a unique function G such that for every x ∈ X, = (, | {:}). That is, if we want to construct a function G on X , we may define G ( x ) using the values of G ( y ) for y R x . As an example, consider the well-founded relation ( N , S ) , where N is the set of all natural numbers , and S is the graph of the successor function x ...