Search results
Results From The WOW.Com Content Network
Autosomal dominant and autosomal recessive inheritance, the two most common Mendelian inheritance patterns. An autosome is any chromosome other than a sex chromosome.. In genetics, dominance is the phenomenon of one variant of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome.
Where the heterozygote is indistinguishable from one of the homozygotes, the allele expressed is the one that leads to the "dominant" phenotype, [9] [10] and the other allele is said to be "recessive". The degree and pattern of dominance varies among loci. This type of interaction was first formally-described by Gregor Mendel.
Alleles at a locus may be dominant or recessive; dominant alleles give rise to their corresponding phenotypes when paired with any other allele for the same trait, whereas recessive alleles give rise to their corresponding phenotype only when paired with another copy of the same allele. If you know the genotypes of the organisms, you can ...
In a dominant-recessive inheritance, an average of 25% are homozygous with the dominant trait, 50% are heterozygous showing the dominant trait in the phenotype (genetic carriers), 25% are homozygous with the recessive trait and therefore express the recessive trait in the phenotype. The genotypic ratio is 1: 2 : 1, and the phenotypic ratio is 3: 1.
The alleles of genes can either be dominant or recessive. A dominant allele needs only one copy to be expressed while a recessive allele needs two copies (homozygous) in a diploid organism to be expressed. Dominant and recessive alleles help to determine the offspring's genotypes, and therefore phenotypes. [citation needed]
In the example on the right, both parents are heterozygous, with a genotype of Bb. The offspring can inherit a dominant allele from each parent, making them homozygous with a genotype of BB. The offspring can inherit a dominant allele from one parent and a recessive allele from the other parent, making them heterozygous with a genotype of Bb.
Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F 1 generation are heterozygous and share the same dominant phenotype (2), while the F 2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).
Pseudodominance is the situation in which the inheritance of a recessive trait mimics a dominant pattern. [1]Normally, two recessive alleles need to be inherited (one from each parent) for the recessive trait to be expressed but recessive merely means that the trait is only expressed in the absence of the dominant alleles.