When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Calvin cycle - Wikipedia

    en.wikipedia.org/wiki/Calvin_cycle

    The enzymes in the Calvin cycle are functionally equivalent to most enzymes used in other metabolic pathways such as gluconeogenesis and the pentose phosphate pathway, but the enzymes in the Calvin cycle are found in the chloroplast stroma instead of the cell cytosol, separating the reactions. They are activated in the light (which is why the ...

  3. Photorespiration - Wikipedia

    en.wikipedia.org/wiki/Photorespiration

    The desired reaction is the addition of carbon dioxide to RuBP (carboxylation), a key step in the Calvin–Benson cycle, but approximately 25% of reactions by RuBisCO instead add oxygen to RuBP (oxygenation), creating a product that cannot be used within the Calvin–Benson cycle

  4. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    The carbon reduction cycle is known as the Calvin cycle, but many scientists refer to it as the Calvin-Benson, Benson-Calvin, or even Calvin-Benson-Bassham (or CBB) Cycle. Nobel Prize–winning scientist Rudolph A. Marcus was later able to discover the function and significance of the electron transport chain.

  5. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    In 1950, first experimental evidence for the existence of photophosphorylation in vivo was presented by Otto Kandler using intact Chlorella cells and interpreting his findings as light-dependent ATP formation. [1] In 1954, Daniel I. Arnon et.al. discovered photophosphorylation in vitro in isolated chloroplasts with the help of P 32. [2]

  6. Evolution of photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Evolution_of_photosynthesis

    A C3 plant uses the Calvin cycle for the initial steps that incorporate CO 2 into organic material. A C4 plant prefaces the Calvin cycle with reactions that incorporate CO 2 into four-carbon compounds. A CAM plant uses crassulacean acid metabolism, an adaptation for photosynthesis in arid conditions. C4 and CAM plants have special adaptations ...

  7. Fractionation of carbon isotopes in oxygenic photosynthesis

    en.wikipedia.org/wiki/Fractionation_of_carbon...

    These plants differ from C3 plants because CO 2 is initially converted to a four-carbon molecule, malate, which is shuttled to bundle sheath cells, released back as CO 2 and only then enters the Calvin Cycle. In contrast, C3 plants directly perform the Calvin Cycle in mesophyll cells, without making use of a CO 2 concentration method. Malate ...

  8. C3 carbon fixation - Wikipedia

    en.wikipedia.org/wiki/C3_carbon_fixation

    Calvin–Benson cycle. C 3 carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being C 4 and CAM.This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of 3-phosphoglycerate through the following reaction:

  9. C4 carbon fixation - Wikipedia

    en.wikipedia.org/wiki/C4_carbon_fixation

    A: Mesophyll cell B: Chloroplast C: Vascular tissue D: Bundle sheath cell E: Stoma F: Vascular tissue 1. CO 2 is fixed to produce a four-carbon molecule (malate or aspartate). 2. The molecule exits the cell and enters the bundle sheath cells. 3. It is then broken down into CO 2 and pyruvate. CO 2 enters the Calvin cycle to produce carbohydrates. 4.