Search results
Results From The WOW.Com Content Network
The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. In quantum field theory, the ground state is usually called the vacuum state or the vacuum.
The quantum spin liquid state was first proposed by physicist Phil Anderson in 1973 as the ground state for a system of spins on a triangular lattice that interact antiferromagnetically with their nearest neighbors, i.e. neighboring spins seek to be aligned in opposite directions. [2]
In quantum mechanical terms, the zero-point energy is the expectation value of the Hamiltonian of the system in the ground state. If more than one ground state exists, they are said to be degenerate. Many systems have degenerate ground states. Degeneracy occurs whenever there exists a unitary operator which acts non-trivially on a ground state ...
The transition describes an abrupt change in the ground state of a many-body system due to its quantum fluctuations. Such a quantum phase transition can be a second-order phase transition . [ 1 ] Quantum phase transitions can also be represented by the topological fermion condensation quantum phase transition, see e.g. strongly correlated ...
Helimagnetism: A state with spatially rotating magnetic order. Spin glass: A magnetic state characterized by randomness. Quantum spin liquid: A disordered state in a system of interacting quantum spins which preserves its disorder to very low temperatures, unlike other disordered states.
In physics, topological order [1] is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy [2] and quantized non-abelian geometric phases of degenerate ground states. [1]
The system cannot lose energy to the environment and come to rest because it is already in its quantum ground state. Time crystals were first proposed theoretically by Frank Wilczek in 2012 as a time-based analogue to common crystals – whereas the atoms in crystals are arranged periodically in space, the atoms in a time crystal are arranged ...
Quantum Hall transitions are the quantum phase transitions that occur between different robustly quantized electronic phases of the quantum Hall effect. The robust quantization of these electronic phases is due to strong localization of electrons in their disordered, two-dimensional potential.