Ads
related to: machine learning algorithms and techniques pdf format printable free
Search results
Results From The WOW.Com Content Network
Printer-friendly PDF version of the Algorithms Wikibook. Licensing Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License , Version 1.2 or any later version published by the Free Software Foundation ; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Foundations of Machine Learning, The MIT Press. ISBN 978-0-262-01825-8. Ian H. Witten and Eibe Frank (2011). Data Mining: Practical machine learning tools and techniques Morgan Kaufmann, 664pp., ISBN 978-0-12-374856-0. David J. C. MacKay. Information Theory, Inference, and Learning Algorithms Cambridge: Cambridge University Press, 2003.
Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. [ 1 ] [ 2 ] [ 3 ] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that ...
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Learning algorithm: Numerous trade-offs exist between learning algorithms. Almost any algorithm will work well with the correct hyperparameters [164] for training on a particular data set. However, selecting and tuning an algorithm for training on unseen data requires significant experimentation.
There are several broadly recognized algorithmic techniques that offer a proven method or process for designing and constructing algorithms. Different techniques may be used depending on the objective, which may include searching, sorting, mathematical optimization, constraint satisfaction, categorization, analysis, and prediction.
Data mining in general and rule induction in detail are trying to create algorithms without human programming but with analyzing existing data structures. [ 1 ] : 415- In the easiest case, a rule is expressed with “if-then statements” and was created with the ID3 algorithm for decision tree learning.
Algorithmic learning theory is different from statistical learning theory in that it does not make use of statistical assumptions and analysis. Both algorithmic and statistical learning theory are concerned with machine learning and can thus be viewed as branches of computational learning theory [citation needed].