When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. State space (computer science) - Wikipedia

    en.wikipedia.org/wiki/State_space_(computer_science)

    If the size of the state space is finite, calculating the size of the state space is a combinatorial problem. [4] For example, in the Eight queens puzzle, the state space can be calculated by counting all possible ways to place 8 pieces on an 8x8 chessboard. This is the same as choosing 8 positions without replacement from a set of 64, or

  4. Rosenbrock system matrix - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_system_matrix

    In applied mathematics, the Rosenbrock system matrix or Rosenbrock's system matrix of a linear time-invariant system is a useful representation bridging state-space representation and transfer function matrix form. It was proposed in 1967 by Howard H. Rosenbrock. [1]

  5. Multidimensional system - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_system

    A state-space model is a representation of a system in which the effect of all "prior" input values is contained by a state vector. In the case of an m-d system, each dimension has a state vector that contains the effect of prior inputs relative to that dimension. The collection of all such dimensional state vectors at a point constitutes the ...

  6. Bond graph - Wikipedia

    en.wikipedia.org/wiki/Bond_graph

    State-space representation is especially powerful as it allows complex multi-order differential system to be solved as a system of first-order equations instead. The general form of the state equation is ˙ = + where () is a column matrix of the state variables, or the unknowns of the system.

  7. Observability - Wikipedia

    en.wikipedia.org/wiki/Observability

    Consider a physical system modeled in state-space representation. A system is said to be observable if, for every possible evolution of state and control vectors, the current state can be estimated using only the information from outputs (physically, this generally corresponds to information obtained by sensors). In other words, one can ...

  8. State (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/State_(functional_analysis)

    By Gelfand representation, every commutative C*-algebra A is of the form C 0 (X) for some locally compact Hausdorff X. In this case, S(A) consists of positive Radon measures on X, and the pure states are the evaluation functionals on X. More generally, the GNS construction shows that every state is, after choosing a suitable representation, a ...

  9. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    It is clear from the definition of the inner product on the GNS Hilbert space that the state can be recovered as a vector state on . This proves the theorem. This proves the theorem. The method used to produce a ∗ {\displaystyle *} -representation from a state of A {\displaystyle A} in the proof of the above theorem is called the GNS ...