Ad
related to: parallelogram shape
Search results
Results From The WOW.Com Content Network
In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure.
In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term rhomboid is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. [a] Three equivalent definitions of parallelepiped are a hexahedron with three pairs of parallel faces,
Table of Shapes Section Sub-Section Sup-Section Name Algebraic Curves ¿ Curves ¿ Curves: Cubic Plane Curve: Quartic Plane Curve: Rational Curves: Degree 2: Conic Section(s) Unit Circle: Unit Hyperbola: Degree 3: Folium of Descartes: Cissoid of Diocles: Conchoid of de Sluze: Right Strophoid: Semicubical Parabola: Serpentine Curve: Trident ...
Traditionally, in two-dimensional geometry, a rhomboid is a parallelogram in which adjacent sides are of unequal lengths and angles are non-right angled.. The terms "rhomboid" and "parallelogram" are often erroneously conflated with each other (i.e, when most people refer to a "parallelogram" they almost always mean a rhomboid, a specific subtype of parallelogram); however, while all rhomboids ...
In geometry, a parallelogon is a polygon with parallel opposite sides ... A four-sided parallelogon is called a parallelogram. The faces of a parallelohedron ...
An ICM photo with a diamond-shaped composition. A simple (non-self-intersecting) quadrilateral is a rhombus if and only if it is any one of the following: [6] [7] a parallelogram in which a diagonal bisects an interior angle; a parallelogram in which at least two consecutive sides are equal in length
A set of geometric shapes in 2 dimensions: parallelogram, triangle & circle A set of geometric shapes in 3 dimensions: pyramid, sphere & cube. A geometric shape consists of the geometric information which remains when location, scale, orientation and reflection are removed from the description of a geometric object. [1]
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.