Search results
Results From The WOW.Com Content Network
Since an electron has charge, it has a surrounding electric field; if that electron is moving relative to an observer, the observer will observe it to generate a magnetic field. Electromagnetic fields produced from other sources will affect the motion of an electron according to the Lorentz force law.
One consequence is that an external magnetic field exerts a torque on the electron magnetic moment that depends on the orientation of this dipole with respect to the field. If the electron is visualized as a classical rigid body in which the mass and charge have identical distribution and motion that is rotating about an axis with angular ...
The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field. These vector fields each have a value defined at every point of space and time and are thus often regarded as functions of the space and time coordinates. As such, they are often written as E(x, y ...
Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field. However, if either the electric or magnetic field has a time-dependence, then both fields must be considered together as a coupled electromagnetic field using Maxwell's equations. [9]
In a case when the external magnetic field is non-uniform, there will be a force, proportional to the magnetic field gradient, acting on the magnetic moment itself. There are two expressions for the force acting on a magnetic dipole, depending on whether the model used for the dipole is a current loop or two monopoles (analogous to the electric ...
The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).
The red dot e 1 shows a conduction electron in the sheet right after it has undergone a collision with an atom, and e 2 shows the same electron after it has been accelerated by the magnetic field. On average at e 1 the electron has the same velocity as the sheet (v, black arrow) in the +x direction. The magnetic field (B, green arrow) of the ...
An electron has an equal negative charge, ... increasing the surface area per unit volume and therefore the capacitance. ... the magnetic field does too, ...