Search results
Results From The WOW.Com Content Network
The relative vorticity is the vorticity relative to the Earth induced by the air velocity field. This air velocity field is often modeled as a two-dimensional flow parallel to the ground, so that the relative vorticity vector is generally scalar rotation quantity perpendicular to the ground.
Conceptually, the vorticity could be observed by placing a tiny rough ball at the point in question, free to move with the fluid, and observing how it rotates about its center. The direction of the vorticity vector is defined to be the direction of the axis of rotation of this imaginary ball (according to the right-hand rule ) while its length ...
where is the relative vorticity, is the layer depth, and is the Coriolis parameter. The conserved quantity, in parenthesis in equation (3), was later named the shallow water potential vorticity. For an atmosphere with multiple layers, with each layer having constant potential temperature, the above equation takes the form
Vorticity in the atmosphere is created in three different ways, which are named in their resultant vorticity. These are; Coriolis vorticity, curvature vorticity, and shear vorticity. For example, at the base of a trough, there is curvature and shear vorticity. Curvature vorticity is due to the increasing cyclonic turning as an air parcel enters ...
The barotropic vorticity equation assumes the atmosphere is nearly barotropic, which means that the direction and speed of the geostrophic wind are independent of height. In other words, there is no vertical wind shear of the geostrophic wind. It also implies that thickness contours (a proxy for temperature) are parallel to upper level height ...
Shortwave trough with associated vorticity. A shortwave or shortwave trough is an embedded kink in the trough / ridge pattern. Its length scale is much smaller than that of and is embedded within longwaves, which are responsible for the largest scale (synoptic scale) weather systems.
In meteorology, [2] helicity corresponds to the transfer of vorticity from the environment to an air parcel in convective motion. Here the definition of helicity is simplified to only use the horizontal component of wind and vorticity, and to only integrate in the vertical direction, replacing the volume integral with a one-dimensional definite integral or line integral:
Turbulent flows have non-zero vorticity and are characterized by a strong three-dimensional vortex generation mechanism known as vortex stretching. In fluid dynamics, they are essentially vortices subjected to stretching associated with a corresponding increase of the component of vorticity in the stretching direction—due to the conservation ...