Search results
Results From The WOW.Com Content Network
As there are many units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per cubic metre (kg/m 3) and the cgs unit of gram per cubic centimetre (g/cm 3) are probably the most commonly used units for density. One g/cm 3 is equal to 1000 kg/m 3. One cubic ...
The increase in weight is equal to the amount of liquid displaced by the object, which is the same as the volume of the suspended object times the density of the liquid. [1] The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [2]
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
The kilogram per cubic metre (symbol: kg·m −3, or kg/m 3) is the unit of density in the International System of Units (SI). It is defined by dividing the SI unit of mass, the kilogram, by the SI unit of volume, the cubic metre. [1]
Avoirdupois is a system of mass based on a pound of 16 ounces, while Troy weight is the system of mass where 12 troy ounces equals one troy pound. The symbol g 0 is used to denote standard gravity in order to avoid confusion with the (upright) g symbol for gram.
It is equivalent to the units gram per millilitre (g/mL) and kilogram per litre (kg/L). The density of water is about 1 g/cm 3, since the gram was originally defined as the mass of one cubic centimetre of water at its maximum density at 4 °C (39 °F). [1]
It follows, therefore, that 1000th of a litre, known as one millilitre (1 mL), of water has a mass of about 1 g; 1000 litres of water has a mass of about 1000 kg (1 tonne or megagram). This relationship holds because the gram was originally defined as the mass of 1 mL of water; however, this definition was abandoned in 1799 because the density ...
Relative density with respect to air can be obtained by =, where is the molar mass and the approximately equal sign is used because equality pertains only if 1 mol of the gas and 1 mol of air occupy the same volume at a given temperature and pressure, i.e., they are both ideal gases. Ideal behaviour is usually only seen at very low pressure.