Search results
Results From The WOW.Com Content Network
Any definition of expected value may be extended to define an expected value of a multidimensional random variable, i.e. a random vector X. It is defined component by component, as E[X] i = E[X i]. Similarly, one may define the expected value of a random matrix X with components X ij by E[X] ij = E[X ij].
The unconditional expectation of rainfall for an unspecified day is the average of the rainfall amounts for those 3652 days. The conditional expectation of rainfall for an otherwise unspecified day known to be (conditional on being) in the month of March, is the average of daily rainfall over all 310 days of the ten–year period that fall in ...
The expected value or mean of a random vector is a fixed vector [] whose elements are the expected values of the respective random variables. [ 3 ] : p.333 E [ X ] = ( E [ X 1 ] , . . .
In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. Stopped Brownian motion is an example of a martingale. It can model an even coin-toss ...
If p = 1/n and X is geometrically distributed with parameter p, then the distribution of X/n approaches an exponential distribution with expected value 1 as n → ∞, since (/ >) = (>) = = = [()] [] =. More generally, if p = λ/n, where λ is a parameter, then as n→ ∞ the distribution of X/n approaches an exponential distribution with rate ...
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then
Indeed, the expected value [] is not defined for any positive value of the argument , since the defining integral diverges. The characteristic function E [ e i t X ] {\displaystyle \operatorname {E} [e^{itX}]} is defined for real values of t , but is not defined for any complex value of t that has a negative imaginary part, and hence ...
Bernoulli made a clear distinction between expected value and expected utility. Instead of using the weighted outcomes, he used the weighted utility multiplied by probabilities. He proved that the utility function used in real life is finite, even when its expected value is infinite. [3]