Search results
Results From The WOW.Com Content Network
An example of slant range is the distance to an aircraft flying at high altitude with respect to that of the radar antenna. The slant range (1) is the hypotenuse of the triangle represented by the altitude of the aircraft and the distance between the radar antenna and the aircraft's ground track (point (3) on the earth directly below the aircraft).
Typically, the range of an elevated target is considered in terms of the slant range, incorporating both the horizontal distance and the elevation distance (possibly negative, i.e. downhill), as when a rangefinder is used to determine the distance to target. The slant range is not compatible with standard ballistics tables for estimating bullet ...
[The percentage error, which increases roughly in proportion to the height, is less than 1% when H is less than 250 km.] With this calculation, the horizon for a radar at a 1-mile (1.6 km) altitude is 89-mile (143 km). The radar horizon with an antenna height of 75 feet (23 m) over the ocean is 10-mile (16 km).
Historically, roof pitch was designated in two other ways: A ratio of the ridge height to the width of the building (span) [6] and as a ratio of the rafter length to the width of the building. [7] Commonly used roof pitches were given names such as: Greek: the ridge height is 1 ⁄ 9 to 1 ⁄ 7 the span (an angle of 12.5° to 16°);
The slant distance s (chord length) between two points can be reduced to the arc length on the ellipsoid surface S as: [21] = (+) / / where R is evaluated from Earth's azimuthal radius of curvature and h are ellipsoidal heights are each point. The first term on the right-hand side of the equation accounts for the mean elevation and the second ...
The slant height of a right circular cone is the distance from any point on the circle of its base to the apex via a line segment along the surface of the cone. It is given by r 2 + h 2 {\displaystyle {\sqrt {r^{2}+h^{2}}}} , where r {\displaystyle r} is the radius of the base and h {\displaystyle h} is the height.
For premium support please call: 800-290-4726 more ways to reach us
The azimuthal resolution (better known as crossrange resolution) depends on the beamwidth of the radar antenna. It is derived from the ratio of the physical size of the antenna (the real aperture) to the wavelength used. By the spreading of the beam it is also dependent on the slant range.