Ads
related to: partial quotient calculator
Search results
Results From The WOW.Com Content Network
At the same time the student is generating a list of the multiples of the small number (i.e., partial quotients) that have so far been taken away, which when added up together would then become the whole number quotient itself. For example, to calculate 132 ÷ 8, one might successively subtract 80, 40 and 8 to leave 4:
Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R, and either R = 0 or the degree of R is lower than the degree of B.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Thought of quotitively, a division problem can be solved by repeatedly subtracting groups of the size of the divisor. [1] For instance, suppose each egg carton fits 12 eggs, and the problem is to find how many cartons are needed to fit 36 eggs in total.
Here, the partial dividend is 9. The first number to be divided by the divisor (4) is the partial dividend (9). One writes the integer part of the result (2) above the division bar over the leftmost digit of the dividend, and one writes the remainder (1) as a small digit above and to the right of the partial dividend (9).
In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + h / 2 ) and f ′(x − h / 2 ) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:
An example of long division performed without a calculator. A more detailed breakdown of the steps goes as follows: Find the shortest sequence of digits starting from the left end of the dividend, 500, that the divisor 4 goes into at least once. In this case, this is simply the first digit, 5.
Apart from division by zero being undefined, the quotient is not an integer unless the dividend is an integer multiple of the divisor. For example, 26 cannot be divided by 11 to give an integer. Such a case uses one of five approaches: Say that 26 cannot be divided by 11; division becomes a partial function.