When.com Web Search

  1. Ad

    related to: sklearn which model to use for research proposal is best

Search results

  1. Results From The WOW.Com Content Network
  2. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  3. scikit-multiflow - Wikipedia

    en.wikipedia.org/wiki/Scikit-multiflow

    The scikit-multiflow library is implemented under the open research principles and is currently distributed under the BSD 3-clause license. scikit-multiflow is mainly written in Python, and some core elements are written in Cython for performance. scikit-multiflow integrates with other Python libraries such as Matplotlib for plotting, scikit-learn for incremental learning methods [4 ...

  4. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The use of different model parameters and different corpus sizes can greatly affect the quality of a word2vec model. Accuracy can be improved in a number of ways, including the choice of model architecture (CBOW or Skip-Gram), increasing the training data set, increasing the number of vector dimensions, and increasing the window size of words ...

  5. Latent Dirichlet allocation - Wikipedia

    en.wikipedia.org/wiki/Latent_Dirichlet_allocation

    Related models and techniques are, among others, latent semantic indexing, independent component analysis, probabilistic latent semantic indexing, non-negative matrix factorization, and Gamma-Poisson distribution. The LDA model is highly modular and can therefore be easily extended. The main field of interest is modeling relations between topics.

  6. Model selection - Wikipedia

    en.wikipedia.org/wiki/Model_selection

    Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis , this may be the selection of a statistical model from a set of candidate models, given data.

  7. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [ 25 ] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  8. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    The difference between the multinomial logit model and numerous other methods, models, algorithms, etc. with the same basic setup (the perceptron algorithm, support vector machines, linear discriminant analysis, etc.) is the procedure for determining (training) the optimal weights/coefficients and the way that the score is interpreted.

  9. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.