Search results
Results From The WOW.Com Content Network
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
10 features for each sample are given. 569 Text Classification 1995 [267] [268] W. Wolberg et al. National Survey on Drug Use and Health Large scale survey on health and drug use in the United States. None. 55,268 Text Classification, regression 2012 [269] United States Department of Health and Human Services: Lung Cancer Dataset
The use of different model parameters and different corpus sizes can greatly affect the quality of a word2vec model. Accuracy can be improved in a number of ways, including the choice of model architecture (CBOW or Skip-Gram), increasing the training data set, increasing the number of vector dimensions, and increasing the window size of words ...
t-SNE has been used for visualization in a wide range of applications, including genomics, computer security research, [3] natural language processing, music analysis, [4] cancer research, [5] bioinformatics, [6] geological domain interpretation, [7] [8] [9] and biomedical signal processing.
As proposed in the original paper, [3] a sparse Dirichlet prior can be used to model the topic-word distribution, following the intuition that the probability distribution over words in a topic is skewed, so that only a small set of words have high probability. The resulting model is the most widely applied variant of LDA today.
Random sample consensus (RANSAC) is an iterative method to estimate parameters of a mathematical model from a set of observed data that contains outliers, when outliers are to be accorded no influence [clarify] on the values of the estimates.
The conformal prediction first arose in a collaboration between Gammerman, Vovk, and Vapnik in 1998; [1] this initial version of conformal prediction used what are now called E-values though the version of conformal prediction best known today uses p-values and was proposed a year later by Saunders et al. [7] Vovk, Gammerman, and their students and collaborators, particularly Craig Saunders ...
As the algorithm sweeps through the training set, it performs the above update for each training sample. Several passes can be made over the training set until the algorithm converges. If this is done, the data can be shuffled for each pass to prevent cycles. Typical implementations may use an adaptive learning rate so that the algorithm ...