Search results
Results From The WOW.Com Content Network
In fact, this rule for prime divisors besides 2 and 5 is really a rule for divisibility by any integer relatively prime to 10 (including 33 and 39; see the table below). This is why the last divisibility condition in the tables above and below for any number relatively prime to 10 has the same kind of form (add or subtract some multiple of the ...
Prime numbers have exactly 2 divisors, and highly composite numbers are in bold. 7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.
This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient. Unlike the other basic operations, when dividing natural numbers there is sometimes a remainder that will not go evenly into the dividend; for example, 10 / 3 leaves a remainder of 1, as 10 is not a multiple of 3.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Let R be a ring, [a] and let a and b be elements of R.If there exists an element x in R with ax = b, one says that a is a left divisor of b and that b is a right multiple of a. [1] ...
The non-negative integers partially ordered by divisibility. The division lattice is an infinite complete bounded distributive lattice whose elements are the natural numbers ordered by divisibility. Its least element is 1, which divides all natural numbers, while its greatest element is 0, which is divisible by all natural numbers.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The two first subsections, are proofs of the generalized version of Euclid's lemma, namely that: if n divides ab and is coprime with a then it divides b. The original Euclid's lemma follows immediately, since, if n is prime then it divides a or does not divide a in which case it is coprime with a so per the generalized version it divides b.