When.com Web Search

  1. Ads

    related to: sum and difference identities worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    The angle difference identities for ⁡ and ⁡ can be derived from the angle sum versions by substituting for and using the facts that ⁡ = ⁡ and ⁡ = ⁡ (). They can also be derived by using a slightly modified version of the figure for the angle sum identities, both of which are shown here.

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six trigonometric functions of θ are, for angles smaller than the right angle:

  4. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Trigonometry has been noted for its many identities, that is, equations that are true for all possible inputs. [83] Identities involving only angles are known as trigonometric identities. Other equations, known as triangle identities, [84] relate both the sides and angles of a given triangle.

  5. Prosthaphaeresis - Wikipedia

    en.wikipedia.org/wiki/Prosthaphaeresis

    Sum and difference: Find the sum and difference of the two angles. Average the cosines : Find the cosines of the sum and difference angles using a cosine table and average them, giving (according to the second formula above) the product cos ⁡ α cos ⁡ β {\displaystyle \cos \alpha \cos \beta } .

  6. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    Alternatively, the identities found at Trigonometric symmetry, shifts, and periodicity may be employed. By the periodicity identities we can say if the formula is true for −π < θ ≤ π then it is true for all real θ. Next we prove the identity in the range ⁠ π / 2 ⁠ < θ ≤ π.

  7. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    This follows from the left side of the equation being equal to zero, requiring the right side to equal zero as well, and so the vector sum of a + b (the long diagonal of the rhombus) dotted with the vector difference a - b (the short diagonal of the rhombus) must equal zero, which indicates the diagonals are perpendicular.