Search results
Results From The WOW.Com Content Network
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
In chemistry, solubility is the ability of a substance, ... The following table gives an overview of solubility rules for various ionic compounds. Soluble Insoluble [23]
All data as presented in these tables is for materials in their standard state, which is at 25 °C and 100 kPa by definition. If values are given for other conditions, this is explicitly indicated. If values are given for other conditions, this is explicitly indicated.
Hume-Rothery rules, named after William Hume-Rothery, are a set of basic rules that describe the conditions under which an element could dissolve in a metal, forming a solid solution. There are two sets of rules; one refers to substitutional solid solutions, and the other refers to interstitial solid solutions.
Nylon 6,6 has a solubility parameter of 13.7 cal 1/2 cm −3/2, and ethanol is likely to be the best solvent of those tabulated. However, the latter is polar, and thus we should be very cautions about using just the Hildebrand solubility parameter to make predictions.
‡ Second column of table indicates solubility at each given temperature in volume of CO 2 as it would be measured at 101.3 kPa and 0 °C per volume of water. The solubility is given for "pure water", i.e., water which contain only CO 2. This water is going to be acidic. For example, at 25 °C the pH of 3.9 is expected (see carbonic acid).
A solubility equilibrium exists when a chemical compound in the solid state is in chemical equilibrium with a solution containing the compound. This type of equilibrium is an example of dynamic equilibrium in that some individual molecules migrate between the solid and solution phases such that the rates of dissolution and precipitation are equal to one another.