Search results
Results From The WOW.Com Content Network
Terms with infinitely many sine factors would necessarily be equal to zero. When only finitely many of the angles are nonzero then only finitely many of the terms on the right side are nonzero because all but finitely many sine factors vanish. Furthermore, in each term all but finitely many of the cosine factors are unity.
For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six ...
The generalised case = for a complex variable has infinitely many roots, but unlike the Dottie number, they are not attracting fixed points. The solution of quadrisection of circle into four parts of the same area with chords coming from the same point can be expressed via Dottie number.
Hence, their utility in the repeated game is represented by the sum of utilities in the basic games. When the game is infinite, a common model for the utility in the infinitely-repeated game is the limit inferior of mean utility: If the game results in a path of outcomes , where denotes the collective choices of the players at iteration t (t=0 ...
The Taylor series is defined for a function which has infinitely many derivatives at a single point, whereas the Fourier series is defined for any integrable function. In particular, the function could be nowhere differentiable. (For example, f (x) could be a Weierstrass function.) The convergence of both series has very different properties.
Examples of harmonic functions of two variables are: The real or imaginary part of any holomorphic function . The function f ( x , y ) = e x sin y ; {\displaystyle \,\!f(x,y)=e^{x}\sin y;} this is a special case of the example above, as f ( x , y ) = Im ( e x + i y ) , {\displaystyle f(x,y)=\operatorname {Im} \left(e^{x+iy}\right),} and ...
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions.Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated.
Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function and the Fourier coefficients of the J-invariant (OEIS: A000521): ∑ n = − 1 ∞ j n q n = 256 ( 1 − z + z 2 ) 3 z 2 ( 1 − z ) 2 , {\displaystyle \sum _{n=-1}^{\infty }\mathrm {j} _{n}q^{n}=256{\dfrac {(1-z+z^{2})^{3}}{z ...