When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  3. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .

  4. Midsquare quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Midsquare_quadrilateral

    Conversely, if two squares intersect in a vertex, then their two diagonals disjoint from this vertex form two opposite sides of a (possibly non-convex) midsquare quadrilateral. [4] [1] The two foci and the two diagonal midpoints of a midsquare quadrilateral form the vertices of a square. Each focus lies on an angle bisector of the two diagonals ...

  5. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A l (half linear dimensions yields quarter area), and the area of the parallelogram is A ...

  6. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    For the general quadrilateral (with four sides not necessarily equal) Euler's quadrilateral theorem states + + + = + +, where is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that x = 0 {\displaystyle x=0} for a parallelogram, and so the general formula simplifies to the parallelogram law.

  7. Newton–Gauss line - Wikipedia

    en.wikipedia.org/wiki/Newton–Gauss_line

    The two complete quadrilaterals have a shared diagonal, EF. N lies on the Newton–Gauss line of both quadrilaterals. N is equidistant from G and H, since it is the circumcenter of the cyclic quadrilateral EGFH. If triangles GMP, HMQ are congruent, and it will follow that M lies on the perpendicular bisector of the line HG.

  8. Midpoint theorem (triangle) - Wikipedia

    en.wikipedia.org/wiki/Midpoint_theorem_(triangle)

    Therefore, the corresponding sides and angles of congruent triangles are equal = = = Transversal AC intersects the lines AB and CD and alternate angles ∠MAN and ∠DCN are equal. Therefore Hence BCDM is a parallelogram. BC and DM are also equal and parallel.

  9. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]