Search results
Results From The WOW.Com Content Network
In abstract algebra, an element a of a ring R is called a left zero divisor if there exists a nonzero x in R such that ax = 0, [1] or equivalently if the map from R to R that sends x to ax is not injective. [a] Similarly, an element a of a ring is called a right zero divisor if there exists a nonzero y in R such that ya = 0.
When R is commutative, the notions of left divisor, right divisor, and two-sided divisor coincide, so one says simply that a is a divisor of b, or that b is a multiple of a, and one writes . Elements a and b of an integral domain are associates if both a ∣ b {\displaystyle a\mid b} and b ∣ a {\displaystyle b\mid a} .
Prime numbers have exactly 2 divisors, and highly composite numbers are in bold. 7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.
In abstract algebra, given a magma with binary operation ∗ (which could nominally be termed multiplication), left division of b by a (written a \ b) is typically defined as the solution x to the equation a ∗ x = b, if this exists and is unique. Similarly, right division of b by a (written b / a) is the solution y to the equation y ∗ a = b ...
Let R be an effective commutative ring.. There is an algorithm for testing if an element a is a zero divisor: this amounts to solving the linear equation ax = 0.; There is an algorithm for testing if an element a is a unit, and if it is, computing its inverse: this amounts to solving the linear equation ax = 1.
For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element a has a multiplicative inverse (i.e. an element x with ax = xa = 1).
In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring.The torsion submodule of a module is the submodule formed by the torsion elements (in cases when this is indeed a submodule, such as when the ring is commutative).
Cancelling 0 from both sides yields =, a false statement. The fallacy here arises from the assumption that it is legitimate to cancel 0 like any other number, whereas, in fact, doing so is a form of division by 0. Using algebra, it is possible to disguise a division by zero [17] to obtain an invalid proof. For example: [18]