Search results
Results From The WOW.Com Content Network
Nonprobability sampling is a form of sampling that does not utilise random sampling techniques where the probability of getting any particular sample may be calculated. Nonprobability samples are not intended to be used to infer from the sample to the general population in statistical terms.
In sociology and statistics research, snowball sampling [1] (or chain sampling, chain-referral sampling, referral sampling [2] [3]) is a nonprobability sampling technique where existing study subjects recruit future subjects from among their acquaintances. Thus the sample group is said to grow like a rolling snowball.
Nonprobability sampling is any sampling method where some elements of the population have no chance of selection (these are sometimes referred to as 'out of coverage'/'undercovered'), or where the probability of selection cannot be accurately determined. It involves the selection of elements based on assumptions regarding the population of ...
Convenience sampling (also known as grab sampling, accidental sampling, or opportunity sampling) is a type of non-probability sampling that involves the sample being drawn from that part of the population that is close to hand.
Quota sampling is the non-probability version of stratified sampling. In stratified sampling, subsets of the population are created so that each subset has a common characteristic, such as gender. Random sampling chooses a number of subjects from each subset with, unlike a quota sample, each potential subject having a known probability of being ...
This type of sampling is common in non-probability market research surveys. Convenience Samples: The sample is composed of whatever persons can be most easily accessed to fill out the survey. In non-probability samples the relationship between the target population and the survey sample is immeasurable and potential bias is unknowable.
Along with convenience sampling and snowball sampling, consecutive sampling is one of the most commonly used kinds of nonprobability sampling. [3] Consecutive sampling is typically better than convenience sampling in controlling sampling bias. [4]
For example, in cluster sampling we can use a two stage sampling in which we sample each cluster (which may be of different sizes) with equal probability, and then sample from each cluster at the second stage using SRS with a fixed proportion (e.g. sample half of the cluster, the whole cluster, etc.).