Ads
related to: construction math worksheets
Search results
Results From The WOW.Com Content Network
A regular n-gon has a solid construction if and only if n=2 a 3 b m where a and b are some non-negative integers and m is a product of zero or more distinct Pierpont primes (primes of the form 2 r 3 s +1). Therefore, regular n-gon admits a solid, but not planar, construction if and only if n is in the sequence
Construction of a regular pentagon. In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge.For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not.
Geometric Constructions is a mathematics textbook on constructible numbers, and more generally on using abstract algebra to model the sets of points that can be created through certain types of geometric construction, and using Galois theory to prove limits on the constructions that can be performed.
In this construction, A is an algebra with involution, meaning: A is an abelian group under + A has a product that is left and right distributive over + A has an involution *, with (x*)* = x, (x + y)* = x* + y*, (xy)* = y*x*. The algebra B = A ⊕ A produced by the Cayley–Dickson construction is also an algebra with involution.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
In mathematics, a building (also Tits building, named after Jacques Tits) is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces.
In algebraic terms, doubling a unit cube requires the construction of a line segment of length x, where x 3 = 2; in other words, x = , the cube root of two. This is because a cube of side length 1 has a volume of 1 3 = 1, and a cube of twice that volume (a volume of 2) has a side length of the cube root of 2.
Subsequent iterations again quadruple the number of copies and halve the side length, preserving the overall area. Meanwhile, the volume of the construction is halved at every step and therefore approaches zero. The limit of this process has neither volume nor surface but, like the Sierpiński gasket, is an intricately connected curve.