Ads
related to: basic construction math worksheetsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The basic constructions. All straightedge-and-compass constructions consist of repeated application of five basic constructions using the points, lines and circles that have already been constructed. These are: Creating the line through two points; Creating the circle that contains one point and has a center at another point
In order to reduce a geometric problem to a problem of pure number theory, the proof uses the fact that a regular n-gon is constructible if and only if the cosine (/) is a constructible number—that is, can be written in terms of the four basic arithmetic operations and the extraction of square roots.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
Geometric Constructions is a mathematics textbook on constructible numbers, and more generally on using abstract algebra to model the sets of points that can be created through certain types of geometric construction, and using Galois theory to prove limits on the constructions that can be performed.
A mathematical statement amounts to a proposition or assertion of some mathematical fact, formula, or construction. Such statements include axioms and the theorems that may be proved from them, conjectures that may be unproven or even unprovable, and also algorithms for computing the answers to questions that can be expressed mathematically.
Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]