Ad
related to: construction math cheat sheet
Search results
Results From The WOW.Com Content Network
2. In geometry and linear algebra, denotes the cross product. 3. In set theory and category theory, denotes the Cartesian product and the direct product. See also × in § Set theory. · 1. Denotes multiplication and is read as times; for example, 3 ⋅ 2. 2. In geometry and linear algebra, denotes the dot product. 3.
An algebraic construction is a method by which an algebraic entity is defined or derived from another. Instances include: This list is incomplete ; you can help by adding missing items .
The concrete details of a given construction may be messy, but if the construction satisfies a universal property, one can forget all those details: all there is to know about the construction is already contained in the universal property. Proofs often become short and elegant if the universal property is used rather than the concrete details.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
We also construct a sheaf on , called the “structure sheaf” as in the affine case, which makes it into a scheme.As in the case of the Spec construction there are many ways to proceed: the most direct one, which is also highly suggestive of the construction of regular functions on a projective variety in classical algebraic geometry, is the following.
A regular n-gon has a solid construction if and only if n=2 a 3 b m where a and b are some non-negative integers and m is a product of zero or more distinct Pierpont primes (primes of the form 2 r 3 s +1). Therefore, regular n-gon admits a solid, but not planar, construction if and only if n is in the sequence
The theory of buildings of type more general than spherical or affine is still relatively undeveloped, but these generalized buildings have already found applications to construction of Kac–Moody groups in algebra, and to nonpositively curved manifolds and hyperbolic groups in topology and geometric group theory.
The Cayley–Dickson construction defines a new algebra as a Cartesian product of an algebra with itself, with multiplication defined in a specific way (different from the componentwise multiplication) and an involution known as conjugation. The product of an element and its conjugate (or sometimes the square root of this product) is called the ...