Search results
Results From The WOW.Com Content Network
Summation of the inductive and capacitive coupling coefficients is performed by formula [3] = + +. (8) This formula is derived from the definition (6) and formulas (4) and (7). Note that the sign of the coupling coefficient itself is of no importance. Frequency response of the filter will not change if signs of all the coupling coefficients ...
Mutual inductance occurs when the change in current in one inductor induces a voltage in another nearby inductor. It is important as the mechanism by which transformers work, but it can also cause unwanted coupling between conductors in a circuit. The mutual inductance, , is also a measure of the coupling between two inductors.
Coupling may be intentional or unintentional. Unintentional inductive coupling can cause signals from one circuit to be induced into a nearby circuit, this is called cross-talk, and is a form of electromagnetic interference. k is the coupling coefficient, Le1 and Le2 is the leakage inductance, M1 (M2) is the mutual inductance
where M is the mutual inductance of the circuits and L p and L s are the inductances of the primary and secondary circuits, respectively. If the flux lines of the primary inductor thread every line of the secondary one, then the coefficient of coupling is 1 and M = L p L s {\textstyle M={\sqrt {L_{p}L_{s}}}} In practice, however, there is of ...
A double-tuned transformer from a radio receiver intermediate-frequency amplifier with its screening can removed. A double-tuned amplifier is a tuned amplifier with transformer coupling between the amplifier stages in which the inductances of both the primary and secondary windings are tuned separately with a capacitor across each.
Each coil inductance can be notionally divided into two parts in the proportions k:(1−k). These are respectively an inductance producing the mutual flux and an inductance producing the leakage flux. Coupling coefficient is a function of the geometry of the system. It is fixed by the positional relationship between the two coils.
Coupling coefficient, or coupling factor, may refer to: Electromechanical coupling coefficient; Coupling coefficient (inductors), or coupling factor, between inductances; Coupling coefficient of resonators; Coupling factor of power dividers and directional couplers; Clebsch–Gordan coefficients of angular momentum coupling in quantum mechanics
In operation as a motor, the stator flux rotation is at the synchronous speed, which is faster than the rotor speed. This causes the stator flux to cycle at the slip frequency inducing rotor current through the mutual inductance between the stator and rotor. The induced current create a rotor flux with magnetic polarity opposite to the stator ...