Search results
Results From The WOW.Com Content Network
Whereas for an axial turbine the rotor is 'impacted' by the fluid flow, for a radial turbine, the flow is smoothly oriented perpendicular to the rotation axis, and it drives the turbine in the same way water drives a watermill. The result is less mechanical stress (and less thermal stress, in case of hot working fluids) which enables a radial ...
A centrifugal pump is an example of a radial flow turbomachine. Mixed flow turbomachines – When axial and radial flow are both present and neither is negligible, the device is termed a mixed flow turbomachine. [9] It combines flow and force components of both radial and axial types. A Francis turbine is an example of a mixed-flow turbine.
It is a no-load condition in a gas turbine, turbocharger or industrial axial compressor but overload in an industrial centrifugal compressor. [29] Hiereth et al. [30] shows a turbocharger compressor full-load, or maximum fuelling, curve runs up close to the surge line. A gas turbine compressor full-load line also runs close to the surge line.
An axial turbine has a similar construction as an axial compressor, but it operates in the reverse, converting flow of the fluid into rotating mechanical energy. A set of static guide vanes or nozzle vanes accelerates and adds swirl to the fluid and directs it to the next row of turbine blades mounted on a turbine rotor.
Using a turbocharger spool valve to increase exhaust gas flow speed to the (twin-scroll) turbine; Using a butterfly valve to force exhaust gas through a smaller passage in the turbo inlet; Electric turbochargers [51] and hybrid turbochargers. A similar phenomenon that is often mistaken for turbo lag is the boost threshold. This is where the ...
Radial flow turbines are mechanically robust compared to axial turbines and they are easy to configure. As a result of that they were considered for the application before axial turbine. They are more tolerant of overspeed and temporary temperature extremes. Radial flow turbines have higher energy extraction capability in one single stage.
Axial compressor animation showing rotating blades and stationary stators The 17-stage axial compressor on the General Electric J79. Air moves from left to right. Each compressor stage is a row of rotor blades which give the air tangential velocity followed by a stationary row of stator blades which slow the air and raise its static pressure.
V f = flow velocity (axial component in case of axial machines, radial component in case of radial machines). The following angles are encountered during the analysis: α = absolute angle is an angle made by V with the plane of the machine (usually the nozzle angle or the guide blade angle) i.e. angle made by absolute velocity V and the ...