When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  3. Modified Richardson iteration - Wikipedia

    en.wikipedia.org/wiki/Modified_Richardson_iteration

    for any vector norm and the corresponding induced matrix norm. ... Because of the form of A, it is a positive semi-definite matrix, so it has no negative eigenvalues.

  4. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  5. Logarithmic norm - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_norm

    The logarithmic norm was independently introduced by Germund Dahlquist [1] and Sergei Lozinskiĭ in 1958, for square matrices. It has since been extended to nonlinear operators and unbounded operators as well. [2] The logarithmic norm has a wide range of applications, in particular in matrix theory, differential equations and numerical analysis ...

  6. Operator norm - Wikipedia

    en.wikipedia.org/wiki/Operator_norm

    Every real -by-matrix corresponds to a linear map from to . Each pair of the plethora of (vector) norms applicable to real vector spaces induces an operator norm for all -by-matrices of real numbers; these induced norms form a subset of matrix norms.

  7. Hilbert–Schmidt operator - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_operator

    The norm induced by this inner product is the Hilbert–Schmidt norm under which the space of Hilbert–Schmidt operators is complete (thus making it into a Hilbert space). [4] The space of all bounded linear operators of finite rank (i.e. that have a finite-dimensional range) is a dense subset of the space of Hilbert–Schmidt operators (with ...

  8. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.

  9. Positive linear functional - Wikipedia

    en.wikipedia.org/wiki/Positive_linear_functional

    Consider, as an example of , the C*-algebra of complex square matrices with the positive elements being the positive-definite matrices. The trace function defined on this C*-algebra is a positive functional, as the eigenvalues of any positive-definite matrix are positive, and so its trace is positive.