Search results
Results From The WOW.Com Content Network
Repeatedly merge sublists to create a new sorted sublist until the single list contains all elements. The single list is the sorted list. The merge algorithm is used repeatedly in the merge sort algorithm. An example merge sort is given in the illustration. It starts with an unsorted array of 7 integers. The array is divided into 7 partitions ...
Merge sort parallelizes well due to the use of the divide-and-conquer method. Several different parallel variants of the algorithm have been developed over the years. Some parallel merge sort algorithms are strongly related to the sequential top-down merge algorithm while others have a different general structure and use the K-way merge method.
Problems of sufficient simplicity are solved directly. For example, to sort a given list of n natural numbers, split it into two lists of about n/2 numbers each, sort each of them in turn, and interleave both results appropriately to obtain the sorted version of the given list (see the picture). This approach is known as the merge sort algorithm.
The previous example is a two-pass sort: first sort, then merge. The sort ends with a single k-way merge, rather than a series of two-way merge passes as in a typical in-memory merge sort. This is because each merge pass reads and writes every value from and to disk, so reducing the number of passes more than compensates for the additional cost ...
An example of such is the classic merge that appears frequently in merge sort examples. The classic merge outputs the data item with the lowest key at each step; given some sorted lists, it produces a sorted list containing all the elements in any of the input lists, and it does so in time proportional to the sum of the lengths of the input lists.
In the first segment, all elements are less than or equal to the pivot value. In the second segment, all elements are greater than or equal to the pivot value. Finally, sort the two segments recursively. Merge sort: Divide the list of elements in two parts, sort the two parts individually and then merge it.
balanced k-way merge sort; balanced merge sort; balanced multiway merge; balanced multiway tree; balanced quicksort; balanced tree; balanced two-way merge sort; BANG file; Batcher sort; Baum Welch algorithm; BB α tree; BDD; BD-tree; Bellman–Ford algorithm; Benford's law; best case; best-case cost; best-first search; biconnected component ...
Block sort, or block merge sort, is a sorting algorithm combining at least two merge operations with an insertion sort to arrive at O(n log n) (see Big O notation) in-place stable sorting time. It gets its name from the observation that merging two sorted lists, A and B , is equivalent to breaking A into evenly sized blocks , inserting each A ...