Search results
Results From The WOW.Com Content Network
However, excitatory interneurons using glutamate in the CNS also exist, as do interneurons releasing neuromodulators like acetylcholine. In addition to these general functions, interneurons in the insect CNS play a number of specific roles in different parts of the nervous system, and also are either excitatory or inhibitory.
Renshaw cells are inhibitory interneurons found in the gray matter of the spinal cord, and are associated in two ways with an alpha motor neuron.. They receive an excitatory collateral from the alpha neuron's axon as they emerge from the motor root, and are thus "kept informed" of how vigorously that neuron is firing.
The Golgi type II cells might be excitatory or inhibitory interneurons, or they can be both. Golgi type II cells function as inhibitory interneurons, which could produce response patterns that make the primary neurons more responsive to the beginning of stimuli and to temporal variations in the afferent input.
This connection is excitatory as glutamate is released. The parallel fibers and ascending axon synapses from the same granule cell fire in synchrony which results in excitatory signals. In the cerebellar cortex there are a variety of inhibitory neurons (interneurons). The only excitatory neurons present in the cerebellar cortex are granule ...
The two main neuronal classes in the cerebral cortex are excitatory projection neurons (around 70-80%) and inhibitory interneurons (around 20–30%). [2] Neurons are often grouped into a cluster known as a nucleus where they usually have roughly similar connections and functions. [3] Nuclei are connected to other nuclei by tracts of white matter.
The Ib afferent branches in the spinal cord. One branch synapses the Ib inhibitory interneuron. The other branch synapses onto an excitatory interneuron. This excitatory interneuron innervates the alpha motor neuron that controls the antagonist muscle. When the agonist muscle is inhibited from contracting, the antagonist muscle contracts.
Basket cells are multipolar GABAergic interneurons that function to make inhibitory synapses and control the overall potentials of target cells. In general, dendrites of basket cells are free branching, contain smooth spines, and extend from 3 to 9 mm. Axons are highly branched, ranging in total from 20 to 50mm in total length.
CA3 has been implicated in a number of working theories on memory and hippocampal learning processes. Slow oscillatory rhythms (theta-band; 3–8 Hz) are cholinergically driven patterns that depend on coupling of interneurons and pyramidal cell axons via gap junctions, as well as glutaminergic (excitatory) and GABAergic (inhibitory) synapses.