When.com Web Search

  1. Ad

    related to: dcode big numbers calculator 2 points 3 10

Search results

  1. Results From The WOW.Com Content Network
  2. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient.

  3. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Go: the standard library package math/big implements arbitrary-precision integers (Int type), rational numbers (Rat type), and floating-point numbers (Float type) Guile: the built-in exact numbers are of arbitrary precision. Example: (expt 10 100) produces the expected (large) result. Exact numbers also include rationals, so (/ 3 4) produces 3/4.

  4. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But if exact values for large factorials are desired, then special software is required, as in the pseudocode that follows, which implements the classic algorithm to calculate 1, 1×2, 1×2×3, 1×2×3×4, etc. the successive factorial numbers. constants: Limit = 1000 % Sufficient digits.

  5. Large numbers - Wikipedia

    en.wikipedia.org/wiki/Large_numbers

    For example, class 5 is defined to include numbers between 10 10 10 10 6 and 10 10 10 10 10 6, which are numbers where X becomes humanly indistinguishable from X 2 [14] (taking iterated logarithms of such X yields indistinguishibility firstly between log(X) and 2log(X), secondly between log(log(X)) and 1+log(log(X)), and finally an extremely ...

  6. Names of large numbers - Wikipedia

    en.wikipedia.org/wiki/Names_of_large_numbers

    The naming procedure for large numbers is based on taking the number n occurring in 10 3n+3 (short scale) or 10 6n (long scale) and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion. In this way, numbers up to 10 3·999+3 = 10 3000 (short scale) or 10 6·999 = 10 5994 (long scale

  7. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken. Values of 10 ↑ n b {\displaystyle 10\uparrow ^{n}b} = H n + 2 ( 10 , b ) {\displaystyle H_{n+2}(10,b)} = 10 [ n + 2 ] b {\displaystyle 10[n+2]b} = 10 → b → n

  8. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    For example, since 1386 can be factored into 2 × 3 × 3 × 7 × 11, and 3213 can be factored into 3 × 3 × 3 × 7 × 17, the GCD of 1386 and 3213 equals 63 = 3 × 3 × 7, the product of their shared prime factors (with 3 repeated since 3 × 3 divides both). If two numbers have no common prime factors, their GCD is 1 (obtained here as an ...

  9. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    To approximate the greater range and precision of real numbers, we have to abandon signed integers and fixed-point numbers and go to a "floating-point" format. In the decimal system, we are familiar with floating-point numbers of the form (scientific notation): 1.1030402 × 10 5 = 1.1030402 × 100000 = 110304.02. or, more compactly: 1.1030402E5