When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

  3. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    Class II (b=c): {3,q+} b,b are easier to see from the dual polyhedron {q,3} with q-gonal faces first divided into triangles with a central point, and then all edges are divided into b sub-edges. Class III : {3, q +} b , c have nonzero unequal values for b , c , and exist in chiral pairs.

  4. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Packing of irregular objects is a problem not lending itself well to closed form solutions; however, the applicability to practical environmental science is quite important. For example, irregularly shaped soil particles pack differently as the sizes and shapes vary, leading to important outcomes for plant species to adapt root formations and ...

  5. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    In this right triangle: sin A = a/h; cos A = b/h; tan A = a/b. Trigonometric ratios are the ratios between edges of a right triangle. These ratios depend only on one acute angle of the right triangle, since any two right triangles with the same acute angle are similar. [31]

  6. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The solution of triangles is the principal purpose of spherical trigonometry: given three, four or five elements of the triangle, determine the others. The case of five given elements is trivial, requiring only a single application of the sine rule. For four given elements there is one non-trivial case, which is discussed below.

  7. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    The article contains a history of the problem and a picture featuring the regular triacontagon and its diagonals. In 2015, an anonymous Japanese woman using the pen name "aerile re" published the first known method (the method of 3 circumcenters) to construct a proof in elementary geometry for a special class of adventitious quadrangles problem.

  8. Malfatti circles - Wikipedia

    en.wikipedia.org/wiki/Malfatti_circles

    Malfatti's assumption that the two problems are equivalent is incorrect. Lob and Richmond (), who went back to the original Italian text, observed that for some triangles a larger area can be achieved by a greedy algorithm that inscribes a single circle of maximal radius within the triangle, inscribes a second circle within one of the three remaining corners of the triangle, the one with the ...

  9. Triangle group - Wikipedia

    en.wikipedia.org/wiki/Triangle_group

    The triangle group is the infinite symmetry group of a certain tessellation (or tiling) of the Euclidean plane by triangles whose angles add up to π (or 180°). Up to permutations, the triple (l, m, n) is one of the triples (2,3,6), (2,4,4), (3,3,3). The corresponding triangle groups are instances of wallpaper groups.