When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. It is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.

  3. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}

  4. Smith chart - Wikipedia

    en.wikipedia.org/wiki/Smith_chart

    The Smith chart is a mathematical transformation of the two-dimensional Cartesian complex plane. Complex numbers with positive real parts map inside the circle. Those with negative real parts map outside the circle. If we are dealing only with impedances with non-negative resistive components, our interest is focused on the area inside the circle.

  5. Complex random variable - Wikipedia

    en.wikipedia.org/wiki/Complex_random_variable

    In probability theory and statistics, complex random variables are a generalization of real-valued random variables to complex numbers, i.e. the possible values a complex random variable may take are complex numbers. [1] Complex random variables can always be considered as pairs of real random variables: their real and imaginary parts ...

  6. Split-complex number - Wikipedia

    en.wikipedia.org/wiki/Split-complex_number

    In algebra, a split-complex number (or hyperbolic number, also perplex number, double number) is based on a hyperbolic unit j satisfying =, where . A split-complex number has two real number components x and y , and is written z = x + y j . {\displaystyle z=x+yj.}

  7. Argument (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Argument_(complex_analysis)

    Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...

  8. Hypercomplex number - Wikipedia

    en.wikipedia.org/wiki/Hypercomplex_number

    The complex numbers are the only 2-dimensional hypercomplex algebra that is a field. Split algebras such as the split-complex numbers that include non-real roots of 1 also contain idempotents and zero divisors (+) =, so such algebras cannot be division algebras.

  9. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be ⁠ 1 / 2 ⁠. In other words, all known nontrivial zeros of the Riemann zeta are of the form z = ⁠ 1 / 2 ⁠ + yi where y is a real number.