When.com Web Search

  1. Ads

    related to: kinematic viscosity of butane tank at top of stove burner insert

Search results

  1. Results From The WOW.Com Content Network
  2. List of viscosities - Wikipedia

    en.wikipedia.org/wiki/List_of_viscosities

    Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.

  3. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together. An everyday example of this viscosity decrease is cooking oil moving more fluidly in a hot frying pan than in a cold one.

  4. Butane (data page) - Wikipedia

    en.wikipedia.org/wiki/Butane_(data_page)

    (Top) 1 Material Safety Data Sheet. 2 Structure and properties. 3 Thermodynamic properties. 4 Vapor pressure of liquid. 5 Spectral data. ... Vapor pressure of n-butane.

  5. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir George Gabriel Stokes. [29] In U.S. usage, stoke is sometimes used as the singular form.

  6. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.

  7. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A series of steel ball bearings of different diameters are normally used in the classic experiment to improve the accuracy of the calculation.

  8. Lamb–Oseen vortex - Wikipedia

    en.wikipedia.org/wiki/Lamb–Oseen_vortex

    In fluid dynamics, the Lamb–Oseen vortex models a line vortex that decays due to viscosity. This vortex is named after Horace Lamb and Carl Wilhelm Oseen. [1] [2] Vector plot of the Lamb–Oseen vortex velocity field. Evolution of a Lamb–Oseen vortex in air in real time. Free-floating test particles reveal the velocity and vorticity pattern.

  9. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    kinematic viscosity ν of the fluid, size of the body, expressed in terms of its wetted area A, and; drag force F d. Using the algorithm of the Buckingham π theorem, these five variables can be reduced to two dimensionless groups: drag coefficient c d and; Reynolds number Re.