Search results
Results From The WOW.Com Content Network
There are different classes of elongation factors. Some factors can increase the overall rate of transcribing, some can help the polymerase through transient pausing sites, and some can assist the polymerase to transcribe through chromatin. [24] One of the elongation factors, P-TEFb, is particularly important. [25]
To initiate the transcription process in a cell's nucleus, DNA double helices are unwound and hydrogen bonds connecting compatible nucleic acids of DNA are broken to produce two unconnected single DNA strands. [1] One strand of the DNA template is used for transcription of the single-stranded primary transcript mRNA.
Only one of the two DNA strands serves as a template for transcription. The antisense strand of DNA is read by RNA polymerase from the 3' end to the 5' end during transcription (3' → 5'). The complementary RNA is created in the opposite direction, in the 5' → 3' direction, matching the sequence of the sense strand except switching uracil ...
The generalised view of a transcription factory would feature between 4 – 30 RNA polymerase molecules [1] and it is thought that the more transcriptionally active a cell is, the more polymerases that will be present in a factory in order to meet the demands of transcription.
RNA Polymerase II exists in two forms unphosphorylated and phosphorylated, IIA and IIO respectively. [5] [3] The transition between the two forms facilitates different functions for transcription. The phosphorylation of CTD is catalyzed by one of the six general transcription factors, TFIIH. TFIIH serves two purposes: one is to unwind the DNA ...
Transcription preinitiation complex, represented by the central cluster of proteins, causes RNA polymerase to bind to target DNA site. The PIC is able to bind both the promoter sequence near the gene to be transcribed and an enhancer sequence in a different part of the genome, allowing enhancer sequences to regulate a gene distant from it.
Within the field of molecular biology, the epitranscriptome includes all the biochemical modifications of the RNA (the transcriptome) within a cell. [1] In analogy to epigenetics that describes "functionally relevant changes to the genome that do not involve a change in the nucleotide sequence", epitranscriptomics involves all functionally relevant changes to the transcriptome that do not ...
One of the advantages of PCR-based methods is the ability to generate full-length cDNA. However, different PCR efficiency on particular sequences (for instance, GC content and snapback structure) may also be exponentially amplified, producing libraries with uneven coverage.