When.com Web Search

  1. Ad

    related to: water wave frequency range calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    The effect of frequency dispersion is that the waves travel as a function of wavelength, so that spatial and temporal phase properties of the propagating wave are constantly changing. For example, under the action of gravity, water waves with a longer wavelength travel faster than those with a shorter wavelength.

  3. Underwater acoustics - Wikipedia

    en.wikipedia.org/wiki/Underwater_acoustics

    Several aquatic bird species have been observed to react to underwater sound in the 1–4 kHz range, [49] which follows the frequency range of best hearing sensitivities of birds in air. Seaducks and cormorants have been trained to respond to sounds of 1–4 kHz with lowest hearing threshold (highest sensitivity) of 71 dB re 1 μPa [ 50 ...

  4. Boussinesq approximation (water waves) - Wikipedia

    en.wikipedia.org/wiki/Boussinesq_approximation...

    The waves propagate over an elliptic-shaped underwater shoal on a plane beach. This example combines several effects of waves and shallow water, including refraction, diffraction, shoaling and weak non-linearity. In fluid dynamics, the Boussinesq approximation for water waves is an approximation valid for weakly non-linear and fairly long waves.

  5. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    Frequency dispersion of surface gravity waves on deep water. The red square moves with the phase velocity, and the green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square traverses the figure in the time it takes the green dot to traverse half.

  6. Group velocity - Wikipedia

    en.wikipedia.org/wiki/Group_velocity

    Frequency dispersion in groups of gravity waves on the surface of deep water. The red square moves with the phase velocity, and the green circles propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square overtakes two green circles when moving from the left to the right of the figure.

  7. Significant wave height - Wikipedia

    en.wikipedia.org/wiki/Significant_wave_height

    Significant wave height H m0, defined in the frequency domain, is used both for measured and forecasted wave variance spectra.Most easily, it is defined in terms of the variance m 0 or standard deviation σ η of the surface elevation: [6] = =, where m 0, the zeroth-moment of the variance spectrum, is obtained by integration of the variance spectrum.

  8. Airy wave theory - Wikipedia

    en.wikipedia.org/wiki/Airy_wave_theory

    shallow water – for a water depth smaller than 5% of the wavelength, h < ⁠ 1 / 20 ⁠ λ, the phase speed of the waves is only dependent on water depth, and no longer a function of period or wavelength; [10] and

  9. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...