Search results
Results From The WOW.Com Content Network
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f ( x ) {\displaystyle f(x)} is a polynomial, then x − a {\displaystyle x-a} is a factor of f ( x ) {\displaystyle f(x)} if and only if f ( a ) = 0 {\displaystyle f(a)=0} (that is, a {\displaystyle a} is a root of the polynomial).
If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).
where Q(x) is the quotient of Euclidean division of P(x) = 0 by the linear (degree one) factor x – r. If the coefficients of P(x) are real or complex numbers, the fundamental theorem of algebra asserts that P(x) has a real or complex root. Using the factor theorem recursively, it results that
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.
p is an integer factor of the constant term a 0, and; q is an integer factor of the leading coefficient a n. The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is a n ...
This is a list of notable theorems.Lists of theorems and similar statements include: List of algebras; List of algorithms; List of axioms; List of conjectures
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
By the factor theorem and the behavior of degrees in factorizations the solubility of such quadratic congruence equations is equivalent to the splitting of associated quadratic polynomials over a residue ring into linear factors. In this terminology the law of quadratic reciprocity is stated as follows.