Search results
Results From The WOW.Com Content Network
Nitrogen fixation is a chemical process by which molecular dinitrogen (N 2) is converted into ammonia (NH 3). [1] It occurs both biologically and abiologically in chemical industries. Biological nitrogen fixation or diazotrophy is catalyzed by enzymes called nitrogenases. [2]
Abiological nitrogen fixation describes chemical processes that fix (react with) N 2, usually with the goal of generating ammonia. The dominant technology for abiological nitrogen fixation is the Haber process, which uses iron-based heterogeneous catalysts and H 2 to convert N 2 to NH 3. This article focuses on homogeneous (soluble) catalysts ...
Most biological nitrogen fixation occurs by the activity of molybdenum (Mo)-nitrogenase, found in a wide variety of bacteria and some Archaea. Mo-nitrogenase is a complex two-component enzyme that has multiple metal-containing prosthetic groups. [22] An example of free-living bacteria is Azotobacter.
Nitrogenase is an enzyme responsible for catalyzing nitrogen fixation, which is the reduction of nitrogen (N 2) to ammonia (NH 3) and a process vital to sustaining life on Earth. [9] There are three types of nitrogenase found in various nitrogen-fixing bacteria: molybdenum (Mo) nitrogenase, vanadium (V) nitrogenase , and iron-only (Fe ...
Nitrogen enters the ocean through precipitation, runoff, or as N 2 from the atmosphere. Nitrogen cannot be utilized by phytoplankton as N 2 so it must undergo nitrogen fixation which is performed predominantly by cyanobacteria. [82] Without supplies of fixed nitrogen entering the marine cycle, the fixed nitrogen would be used up in about 2000 ...
Interest in such complexes arises because N 2 comprises the majority of the atmosphere and because many useful compounds contain nitrogen. Biological nitrogen fixation probably occurs via the binding of N 2 to those metal centers in the enzyme nitrogenase, followed by a series of steps that involve electron transfer and protonation. [12]
Heterocysts or heterocytes are specialized nitrogen-fixing cells formed during nitrogen starvation by some filamentous cyanobacteria, such as Nostoc, Cylindrospermum, and Anabaena. [1] They fix nitrogen from dinitrogen (N 2) in the air using the enzyme nitrogenase, in order to provide the cells in the filament with nitrogen for biosynthesis. [2]
Approximately 78% of Earth's atmosphere is N gas (N 2), which is an inert compound and biologically unavailable to most organisms.In order to be utilized in most biological processes, N 2 must be converted to reactive nitrogen (Nr), which includes inorganic reduced forms (NH 3 and NH 4 +), inorganic oxidized forms (NO, NO 2, HNO 3, N 2 O, and NO 3 −), and organic compounds (urea, amines, and ...