When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    The RobertsonSeymour theorem states that finite undirected graphs and graph minors form a well-quasi-ordering. The graph minor relationship does not contain any infinite descending chain, because each contraction or deletion reduces the number of edges and vertices of the graph (a non-negative integer). [8]

  3. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    An edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices it used to connect. An undirected graph H is a minor of another undirected graph G if a graph isomorphic to H can be obtained from G by contracting some edges, deleting some edges, and deleting some isolated vertices.

  4. Graph structure theorem - Wikipedia

    en.wikipedia.org/wiki/Graph_structure_theorem

    A minor of a graph G is any graph H that is isomorphic to a graph that can be obtained from a subgraph of G by contracting some edges. If G does not have a graph H as a minor, then we say that G is H-free. Let H be a fixed graph. Intuitively, if G is a huge H-free graph, then there ought to be a "good reason" for this.

  5. Friedman's SSCG function - Wikipedia

    en.wikipedia.org/wiki/Friedman's_SSCG_function

    In mathematics, a simple subcubic graph (SSCG) is a finite simple graph in which each vertex has a degree of at most three. Suppose we have a sequence of simple subcubic graphs G 1, G 2, ... such that each graph G i has at most i + k vertices (for some integer k) and for no i < j is G i homeomorphically embeddable into (i.e. is a graph minor of) G j.

  6. Non-constructive algorithm existence proofs - Wikipedia

    en.wikipedia.org/wiki/Non-constructive_algorithm...

    By RobertsonSeymour theorem, any set of finite graphs contains only a finite number of minor-minimal elements. In particular, the set of "yes" instances has a finite number of minor-minimal elements. Given an input graph G, the following "algorithm" solves the above problem: For every minor-minimal element H: If H is a minor of G then return ...

  7. Category:Graph minor theory - Wikipedia

    en.wikipedia.org/wiki/Category:Graph_minor_theory

    Pages in category "Graph minor theory" The following 33 pages are in this category, out of 33 total. ... RobertsonSeymour theorem; S. Shallow minor; Snark (graph ...

  8. Graph minors theorem - Wikipedia

    en.wikipedia.org/?title=Graph_minors_theorem&...

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Graph_minors_theorem&oldid=1102375387"

  9. Well-quasi-ordering - Wikipedia

    en.wikipedia.org/wiki/Well-quasi-ordering

    Finite graphs ordered by a notion of embedding called "graph minor" is a well-quasi-order (RobertsonSeymour theorem). Graphs of finite tree-depth ordered by the induced subgraph relation form a well-quasi-order, [ 3 ] as do the cographs ordered by induced subgraphs.

  1. Related searches robertson seymour graph minor test of value analysis example in real life

    robertson seymour graph minorrobertson and seymour theorem
    robertson seymour graph theory