Search results
Results From The WOW.Com Content Network
Materials science is a highly active area of research. Together with materials science departments, physics, chemistry, and many engineering departments are involved in materials research. Materials research covers a broad range of topics; the following non-exhaustive list highlights a few important research areas.
Diffusional transformations like austenite transforming to a cementite and ferrite mixture can be explained using the sigmoidal curve; for example the beginning of pearlitic transformation is represented by the pearlite start (P s) curve. This transformation is complete at P f curve. Nucleation requires an incubation time.
To draw a pole figure, one chooses a particular crystal direction (e.g. the normal to the (100) plane) and then plots that direction, called a pole, for every crystal relative to a set of directions in the material. In a rolled metal, for example, the directions in the material are the rolling direction, transverse direction and rolling plane ...
Characterization, when used in materials science, refers to the broad and general process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained.
It represents the width of a probability density function (PDF) in which a higher modulus is a characteristic of a narrower distribution of values. Use case examples include biological and brittle material failure analysis , where modulus is used to describe the variability of failure strength for materials.
Materials science includes those parts of chemistry, mechanics, physics, geology and biology that deal with the properties of materials. It has components as an applied science ( Materials engineering ) where the properties studied are used industrially.
Anisotropy, in materials science, is a material's directional dependence of a physical property. This is a critical consideration for materials selection in engineering applications. A material with physical properties that are symmetric about an axis that is normal to a plane of isotropy is called a transversely isotropic material.
Mesoscopic physics is a subdiscipline of condensed matter physics that deals with materials of an intermediate size. These materials range in size between the nanoscale for a quantity of atoms (such as a molecule) and of materials measuring micrometres. [1] The lower limit can also be defined as being the size of individual atoms.