When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c 2). Because the speed of light is a large number in everyday units (approximately 300 000 km/s or 186 000 mi/s), the formula implies that a small amount of mass corresponds to an enormous amount of energy.

  3. Specific energy - Wikipedia

    en.wikipedia.org/wiki/Specific_energy

    Kinetic energy per unit mass: ⁠ 1 / 2 ⁠ v 2, where v is the speed (giving J/kg when v is in m/s). See also kinetic energy per unit mass of projectiles . Potential energy with respect to gravity, close to Earth, per unit mass: gh , where g is the acceleration due to gravity ( standardized as ≈9.8 m/s 2 ) and h is the height above the ...

  4. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    The γ factor approaches infinity as v approaches c, and it would take an infinite amount of energy to accelerate an object with mass to the speed of light. The speed of light is the upper limit for the speeds of objects with positive rest mass, and individual photons cannot travel faster than the speed of light. [39]

  5. Planck units - Wikipedia

    en.wikipedia.org/wiki/Planck_units

    Planck units modified so that 8 π G = 1 are known as reduced Planck units, because the Planck mass is divided by √ 8 π. Also, the Bekenstein–Hawking formula for the entropy of a black hole simplifies to S BH = ( m BH ) 2 /2 = 2 π A BH .

  6. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [ 1 ] [ 2 ] [ 3 ] and that the particles are free.

  7. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The relativistic mass is the sum total quantity of energy in a body or system (divided by c 2).Thus, the mass in the formula = is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds =.

  8. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    In this context, "speed of light" really refers to the speed supremum of information transmission or of the movement of ordinary (nonnegative mass) matter, locally, as in a classical vacuum. Thus, a more accurate description would refer to c 0 {\displaystyle c_{0}} rather than the speed of light per se.

  9. Speed - Wikipedia

    en.wikipedia.org/wiki/Speed

    Speed is the magnitude of velocity (a vector), which indicates additionally the direction of motion. Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second (m/s), but the most common unit of speed in everyday usage is the kilometre per hour (km/h) or, in the US and the UK, miles per hour (mph).