Search results
Results From The WOW.Com Content Network
A similar theorem states that K 4 and K 2,3 are the forbidden minors for the set of outerplanar graphs. Although the Robertson–Seymour theorem extends these results to arbitrary minor-closed graph families, it is not a complete substitute for these results, because it does not provide an explicit description of the obstruction set for any family.
A minor of a graph G is any graph H that is isomorphic to a graph that can be obtained from a subgraph of G by contracting some edges. If G does not have a graph H as a minor, then we say that G is H-free. Let H be a fixed graph. Intuitively, if G is a huge H-free graph, then there ought to be a "good reason" for this.
Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor.
In mathematics, a simple subcubic graph (SSCG) is a finite simple graph in which each vertex has a degree of at most three. Suppose we have a sequence of simple subcubic graphs G 1, G 2, ... such that each graph G i has at most i + k vertices (for some integer k) and for no i < j is G i homeomorphically embeddable into (i.e. is a graph minor of) G j.
This states that families of graphs closed under the graph minor operation may be characterized by a finite set of forbidden minors. As part of this work, Robertson and Seymour also proved the graph structure theorem describing the graphs in these families. [6] Additional major results in Robertson's research include the following:
Pages in category "Graph minor theory" The following 33 pages are in this category, out of 33 total. ... Robertson–Seymour theorem; S. Shallow minor; Snark (graph ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If a family F of graphs is closed under taking minors (every minor of a member of F is also in F), then by the Robertson–Seymour theorem F can be characterized as the graphs that do not have any minor in X, where X is a finite set of forbidden minors. [42]